Dynamic Bayesian network modeling of fMRI: A comparison of group-analysis methods
نویسندگان
چکیده
Bayesian network (BN) modeling has recently been introduced as a tool for determining the dependencies between brain regions from functional-magnetic-resonance-imaging (fMRI) data. However, studies to date have yet to explore the optimum way for meaningfully combining individually determined BN models to make group inferences. We contrasted the results from three broad approaches: the "virtual-typical- subject" (VTS) approach which pools or averages group data as if they are sampled from a single, hypothetical virtual typical subject; the "individual-structure" (IS) approach that learns a separate BN for each subject, and then finds commonality across the individual structures, and the "common-structure" (CS) approach that imposes the same network structure on the BN of every subject, but allows the parameters to differ across subjects. To explore the effects of these three approaches, we applied them to an fMRI study exploring the motor effect of L-dopa medication on ten subjects with Parkinson's disease (PD), as the profound clinical effects of this medication suggest that fMRI activation in PD subjects after medication should start approaching that of age-matched controls. We found that none of these approaches is generally superior over the others, according to Bayesian-information-criterion (BIC) scores, and that they led to considerably different group-level results. The IS approach was more sensitive to the normalization effect of the L-dopa medication on brain connectivity. However, for the more homogeneous control population, the VTS approach was superior. Group-analysis approaches should be selected carefully with consideration of both statistical and biomedical evidence.
منابع مشابه
Bayesian Inference for Functional Dynamics Exploring in fMRI Data
This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inf...
متن کاملComparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds
Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...
متن کاملDynamic Safety Analysis CNG Stations Using Fault Tree Approach and Bayesian Network
Introduction: The safety of CNG stations is important because of their location in urban areas, as well as to prevent accidents and to protect the safety of personnel, property, and environment. An event occurrence analysis with probability updating is the key to dynamic safety analysis. Methods and materials: In this study, the Failure Modes and Effects Analysis (FMEA) technique was used to d...
متن کاملUncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm
Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 41 2 شماره
صفحات -
تاریخ انتشار 2008